首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10427篇
  免费   678篇
  国内免费   272篇
工业技术   11377篇
  2024年   15篇
  2023年   188篇
  2022年   177篇
  2021年   326篇
  2020年   335篇
  2019年   303篇
  2018年   309篇
  2017年   265篇
  2016年   248篇
  2015年   264篇
  2014年   535篇
  2013年   617篇
  2012年   647篇
  2011年   822篇
  2010年   731篇
  2009年   617篇
  2008年   649篇
  2007年   680篇
  2006年   730篇
  2005年   586篇
  2004年   530篇
  2003年   363篇
  2002年   241篇
  2001年   185篇
  2000年   187篇
  1999年   189篇
  1998年   176篇
  1997年   110篇
  1996年   79篇
  1995年   53篇
  1994年   46篇
  1993年   37篇
  1992年   31篇
  1991年   31篇
  1990年   21篇
  1989年   20篇
  1988年   12篇
  1987年   4篇
  1986年   9篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
《Ceramics International》2022,48(22):32973-32985
Multilayer structure design is one of the most promising methods for improving the comprehensive performance of AlCrN-based hard coatings applied to cutting tools. In this study, four types of AlCrSiN/AlCrVN/AlCrNbN multilayer coatings, with different modulated thicknesses, were deposited to investigate their microstructure, mechanical, tribological, and oxidizing properties. All multilayer coatings exhibited grain growth along the crystallographic plane of (200) with a NaCl-type face-centered cubic (FCC) structure. The results show that, as the modulation thickness decreases from ~35 nm to ~10 nm, (1) the grain refinement effect is increasingly evident; (2) all multilayer coatings show a hardness of >30 GPa and an elastic modulus of >300 GPa. Both the ability to resist elastic strain to failure and the plastic deformation of multilayer coatings increase. In addition, their resistance to cracking reduces; (3) the wear rates of these multilayer coatings reduce successively from 1.78 × 10?16 m3 N?1 m?1 to 7.7 × 10?17 m3 N?1 m?1. This is attributed to an increase in self-lubricating VOx and a decrease in adhesives from the counterparts; (4) the best high-temperature oxidation resistance was obtained for the multilayer coating with a modulated thickness of ~15 nm.  相似文献   
2.
Oxide-based near infrared (IR)-shielding coatings consisting of quarter‐wave stacks of oxygen-deficient tantalum oxide (Ta2O5?x) and silicon oxide (SiO2) multilayers and tin-doped indium oxide (In2O3) (ITO) films with the thicknesses of 200–600 nm can block the passage of IR-A (wavelength: 760–1400 nm) and IR-B (wavelength: 1400–3000 nm) radiation, respectively. In this study, the optical properties and microstructure of these oxide-based IR-shielding coatings were investigated. Transmission electron microscopy images indicated that amorphous Ta2O5?x/amorphous SiO2 multilayers were uniform and dense. ITO films were found to be highly crystalline and show carrier concentrations of up to 7.1 × 1020 cm?3, resulting in the strong IR-B optical absorption due to the plasma excitation of the free carriers. Oxide-based IR-shielding coatings with an ITO thickness of 420 nm were found to have near-IR shielding rates of >90% and an average visible light transmittance of >70%. The effects of IR on human keratinocytes were studied to evaluate the IR-induced photoaging in human skin. It was found that the downregulation of cellular proliferation and the enhancement of senescence-associated β-galactosidase activity induced by IR irradiation were significantly inhibited by oxide-based IR-shielding coatings. Thus, this study provides a facile method for the development of coatings for smart windows with high IR-shielding ability and high visible light transmittance.  相似文献   
3.
4.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
5.
宋树森  张明 《涂料工业》2020,50(2):69-73
针对南方客户在使用我司客车一段时间后,车身涂层不同程度出现了起泡的质量问题,进行了现场查看,发现起泡位置在车身左右侧蒙皮,且发生在涂层最底层。初步分析原因是热镀锌板+阴极电泳漆 +原子灰三者之间配套存在问题,通过热镀锌板 +阴极电泳漆 +原子灰三者之间的耐高温 80 ℃配套试验,以及室外曝晒试验,得出镀锌板表面是否钝化、电泳漆膜致密程度和原子灰苯乙烯含量是造成涂层底层起泡的主要原因。为了控制涂层起泡问题,重新修订了我司原子灰、镀锌板、电泳漆的技术标准以及部分工艺文件。  相似文献   
6.
在厌氧条件下研究了西南地区一种典型土壤微生物芽孢杆菌Bacillus sp.dwc-2对模拟地下水中U(Ⅵ)的还原行为,重点考察了时间、无机阴离子、腐殖酸(HA)及富里酸(FA)对还原的影响,并利用TEM、EDS、SAED和XPS对还原后的样品进行了表征。结果表明:在pH=7.0、cNaHCO3=5 mmol/L和T=303 K条件下,Bacillus sp.dwc-2对U(Ⅵ)的还原率随时间的增加而增加,24 h内最大还原率为12.2%,此后则随时间的增加逐渐降低;HA和FA对U(Ⅵ)的微生物还原行为有一定影响,其中HA和FA浓度为25 mg/L时,U(Ⅵ)的还原在24 h最明显,其还原率分别为14.2%和16.2%,但随着HA和FA浓度的继续增加,因在U(Ⅵ)离子与HA、FA形成的配合物表面形成致密的腐殖层,抑制了电子的转移,阻止了U(Ⅵ)的还原。此外,研究表明HCO3-也会抑制U(Ⅵ)的还原。TEM-SAED和XPS分析证实了还原过程中U(Ⅳ)的存在。上述结果可为真实环境中微生物还原U(Ⅵ)提供基础数据和参考。  相似文献   
7.
Thermal barrier coatings (TBCs) play a pivotal role in protecting the hot structures of modern turbine engines in aerospace as well as utility applications. To meet the increasing efficiency of gas turbine technology, worldwide research is focused on designing new architecture of TBCs. These TBCs are mainly fabricated by atmospheric plasma spraying (APS) as it is more economical over the electron beam physical vapor deposition (EB-PVD) technology. Notably, bi-layered, multi-layered and functionally graded TBC structures are recognized as favorable designs to obtain adequate coating performance and durability. In this regard, an attempt has been made in this article to highlight the structure, characteristics, limitations and future prospects of bi-layered, multi-layered and functionally graded TBC systems fabricated using plasma spraying and its allied techniques like suspension plasma spray (SPS), solution precursor plasma spray (SPPS) and plasma spray –physical vapor deposition (PS-PVD).  相似文献   
8.
Yb2SiO5 (ytterbium monosilicate) top coatings and Si bond coat layer were deposited by air plasma spray method as a protection layer on SiC substrates for environmental barrier coatings (EBCs) application. The Yb2SiO5-coated specimens were subjected to isothermal heat treatment at 1400 °C on air for 0, 1, 10, and 50 h. The Yb2SiO5 phase of the top coat layer reacted with Si from the bonding layer and O2 from atmosphere formed to the Yb2Si2O7 phase upon heat treatment at 1400 °C. The oxygen penetrated into the cracks to form SiO2 phase of thermally grown oxide (TGO) in the bond coat and the interface of specimens during heat treatment. Horizontal cracks were also observed, due to a mismatch of the coefficient of thermal expansion (CTE) between the top coat and bond coat. The isothermal heat treatment improves the hardness and elastic modulus of Yb2SiO5 coatings; however, these properties in the Si bond coat were a little bit decreased.  相似文献   
9.
A study using three different pairs of electrochromic polymers (ECPs) synthesized onto plaques by means of a modified vapor phase polymerization (VPP) technique is presented. Restriction of the respective polymerization times, allowed both faster and slower polymerizing monomers to be controlled, and produced blended plaques with visually diffuse interfaces. The ECPs within the blended plaques retain their individual electrochromic behavior and when encapsulated into an electrochromic device, show outstanding optical switching performance with little degradation evident over 10,000 cycles, coupled with a switching time of the order of 1 second. Blends also allow multiple diffuse color changes within an electrochromic device, due to the difference in oxidation potentials of the individual ECPs, making them candidates for adaptive camouflage use. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42158.  相似文献   
10.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号